Reference Answer of Lecture 4

1

$$\begin{cases} x' = f(t, x, \mu) \\ x(t_0) = x_0 \end{cases} \qquad \begin{cases} x' = f(t, x, \mu), & \mu' = 0 \\ x(t_0) = x_0 & \mu(t_0) = \mu \end{cases}$$
 (H_{\(\mu\)})

a) $z(t) = (x(t), \mu(t))$ is a solution of $(H_{\mu}) \Leftrightarrow x(t)$ is a solution of (E_{μ}) and $\mu(t) \equiv \mu$;

b)If (E_{μ}) has a unique solution,so does (H_{μ})

Proof:

a)"
$$\Rightarrow$$
"
$$\begin{cases} x' = f(t, x, \mu), & \mu' = 0 \\ x(t_0) = x_0 & \mu(t_0) = \mu \end{cases}$$
 firstly means $x(t)$ is a solution of (E_μ) , besides

 $\mu'=0$ means μ is a constant. And $\mu(t_0)=\mu$ means $\mu(t)\equiv\mu$

"
$$\Leftarrow$$
 " $x(t)$ is a solution of (E_{μ}) means
$$\begin{cases} x' = f(t, x, \mu), \\ x(t_0) = x_0 \end{cases}$$
,

then $\mu(t) \equiv \mu$ means $\mu' = 0$ and $\mu(t_0) = \mu$. So $z(t) = (x(t), \mu(t))$ is a solution of (H_{μ})

b) If (E_{μ}) has a unique solution, but (H_{μ}) has two solutions. Suppose $z_1(t) = (x_1(t), \mu_1(t))$

 $z_2(t) = (x_2(t), \mu_2(t))$ are both solutions of (H_u), then

$$\begin{cases} x_1' = f(t, x_1, \mu_1), & \mu_1' = 0 \\ x_1(t_0) = x_0 & \mu_1(t_0) = \mu \end{cases} \text{ and } \begin{cases} x_2' = f(t, x_2, \mu_2), & \mu_2' = 0 \\ x_2(t_0) = x_0 & \mu_2(t_0) = \mu \end{cases}$$

 μ_i' =0 and $\mu_i(t_0)$ = μ means $\mu_1 \equiv \mu_2 \equiv \mu$

 (E_{μ}) has a unique solution means $x_1 \equiv x_2 \Rightarrow z_1 \equiv z_2$,so (H_{μ}) has a unique solution.

2.
$$Y_{n+1}(t,t_0,x_0) = I + \int_{t_0}^{t} f_x'(s,x_n(s,t_0,x_0)) Y_n(s,t_0,x_0) ds$$
 . Show that $\{Y_n(t,t_0,x_0)\}$ is uniformly convergent to $Y(t,t_0,x_0)$ that is continuous on $(t,t_0,x_0) \in G$.

Proof: Suppose $\|Y_n(s,t_0,x_0)\| \le N$, $\|f_x'(t,x_n(t,t_0,x_0))\| \le M'$, $f_x'(t,x_n(t,t_0,x_0))$ satisfies Liptischz inequality $\|f_x'(t,x(t,t_0,x_0)) - f_x'(t,y(t,t_0,x_0))\| \le L' \|x-y\|$

$$\|\mathbf{Y}_{1} - \mathbf{Y}_{0}\| = \left\| \int_{t_{0}}^{t} f_{x}'(s, x_{0}(s, t_{0}, x_{0})) \mathbf{Y}_{0}(s, t_{0}, x_{0}) ds \right\| \le \mathbf{M}'(\mathsf{t} - t_{0})$$

$$\|\mathbf{Y}_{2} - \mathbf{Y}_{1}\| = \left\| \int_{t_{0}}^{t} f_{x}'(s, x_{1}(s, t_{0}, x_{0})) \mathbf{Y}_{1}(s, t_{0}, x_{0}) ds - \int_{t_{0}}^{t} f_{x}'(s, x_{0}(s, t_{0}, x_{0})) \mathbf{Y}_{0}(s, t_{0}, x_{0}) ds \right\|$$

$$\leq \int_{t_{0}}^{t} \left\| f_{x}'(s, x_{1}(s, t_{0}, x_{0})) - f_{x}'(s, x_{0}(s, t_{0}, x_{0})) \right\| \|Y_{1}(s, t_{0}, x_{0})\| ds$$

$$+ \int_{t_{0}}^{t} \left\| f_{x}'(s, x_{0}(s, t_{0}, x_{0})) \right\| \|Y_{1}(s, t_{0}, x_{0}) - Y_{0}(s, t_{0}, x_{0})\| ds$$

$$\leq L'N \frac{ML}{2!} |t - t_{0}|^{2} + (M')^{2} \frac{|t - t_{0}|^{2}}{2!}$$

$$\|Y_{3} - Y_{2}\| = \left\| \int_{t_{0}}^{t} f_{x}'(s, x_{2}(s, t_{0}, x_{0}))Y_{2}(s, t_{0}, x_{0}) ds - \int_{t_{0}}^{t} f_{x}'(s, x_{1}(s, t_{0}, x_{0}))Y_{1}(s, t_{0}, x_{0}) ds \right\|$$

$$\leq \int_{t_{0}}^{t} \left\| f_{x}'(s, x_{2}(s, t_{0}, x_{0})) - f_{x}'(s, x_{1}(s, t_{0}, x_{0})) \right\| \|Y_{2}(s, t_{0}, x_{0}) \| ds$$

$$+ \int_{t_{0}}^{t} \left\| f_{x}'(s, x_{0}(s, t_{0}, x_{0})) \right\| \|Y_{2}(s, t_{0}, x_{1}) - Y_{1}(s, t_{0}, x_{0}) \| ds$$

$$\leq (L'N)^{2} \frac{ML^{2}}{3!} |t - t_{0}|^{3} + (M')^{3} \frac{|t - t_{0}|^{3}}{3!}$$

$$\vdots$$

 $\|Y_{n} - Y_{n-1}\| \le (L'N)^{n-1} \frac{ML^{n-1}}{n!} |t - t_{0}|^{n} + (M')^{n} \frac{|t - t_{0}|^{n}}{n!}$

Since the series $\sum_{n=1}^{\infty} (L'N)^{n-1} \frac{ML^{n-1}}{n!} |t-t_0|^n + \sum_{n=1}^{\infty} (M')^n \frac{|t-t_0|^n}{n!}$ is convergent on $(t,t_0,x_0) \in G$

So does
$$Y_0(t) + \sum_{n=1}^{\infty} [Y_n(t) - Y_{n-1}(t)]$$

i.e. $\{Y_n(t,t_0,x_0)\}$ is uniformly convergent to $Y(t,t_0,x_0)$ that is continuous on $(t,t_0,x_0) \in G$

3.It's similarly proved like problem2.

4.If
$$x' = f(t, x)$$
, where $f(t, x)$ is continuous and $||f(t, x)|| \le M ||x||$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}^n$,

Show that for any (t_0, x_0) ,the solution x(t) has $I_{\max} = (-\infty, \infty)$.

Proof:

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$$
$$\|x(t)\| \le \|x_0\| + M \int_{t_0}^{t} \|x(s)\| ds$$

From Gronwall's inequality we get

$$||x(t)|| \le ||x_0|| e^{M(t-t_0)}$$

Let $t \to \omega_+$, if $\omega_+ < +\infty \Rightarrow \|x(t)\| < +\infty$ contradicts with Continuation theorem. So $\omega_+ = \infty$.

Similarly $\omega_{-} = -\infty$.

5. All solutions of the Riccati equation $x' = 1 + x^2$ have a finite escape.

Proof: Let
$$\omega_{+} > 0$$
, $x'(t) = 1 + x^{2}(t)$.

$$\frac{dx(t)}{1+x^2(t)} = dt \Rightarrow \arctan x(t) - \arctan x(t_0) = t - t_0 \quad \forall t \in [t_0, \omega_+]$$

$$\therefore 0 \le t - t_0 \le \pi \Longrightarrow 0 \le \omega_+ \le \pi$$

This completes the proof.